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The Neutral Point in Stability and Control Analysis
EDWARD J. RODGERS*

The Pennsylvania State University, University Park, Pa.

The neutral point is normally used to express static stability. If the center of gravity is
ahead of the neutral point, the vehicle is statically stable, if aft, then statically unstable.
This paper shows that the neutral point can also be used to simplify certain problems of sta-
bility and control. This is done by transferring the force and moment system to the neutral
point of the configuration. The moment equation then is not a function of angle of attack
and can be satisfied independently of the force equation. This allows for discussions of the
effects of change of parameters directly from free-body diagrams of the force and moment
system. The method is illustrated for the cases of trim, maneuverability, and stability of a
vehicle.
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Nomenclature

drag
lift
moment
turning radius
reference area
thrust
weight
freestream (flight) velocity
neutral point
maneuver point
drag coefficient = D/(1/2PV0

ZS)
lift coefficient - L/(l/2PVQ*S)

moment coefficient = M/(l/2pVo*Sl)
moment coefficient at zero lift

thrust coefficient = T /
distance from reference position to neutral point divided

by I
distance from reference position to maneuver point

divided by I
distance from reference position to center of gravity

divided by I
dimensionless moment of inertia about pitching axis
reference length
distance between e.g. and control surface
lc/t
load factor = L/W
angular velocity in pitch
ql/V0
angle of attack
time rate of change of angle of attack
dl/Vo
control surface deflection
relative mass parameter = W/pSlg
stick-fixed static margin, i.e., the dimensionless distance

between NP and e.g., positive when the NP is ahead
of the e.g.

stick-fixed static margin less the control force and
moment

stick-fixed maneuver margin, i.e., the dimensionless dis-
tance between the NP and the maneuver point, MP,
positive when the MP is ahead of the NP
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Subscripts and Superscripts
()' = moment is that about the neutral point
— c = force or moment less that contributed by the control

surface
c = force or moment due to the control surface

Introduction

THE method of approach presented in this paper is based
on transferring the force and moment system to the neu-

tral point of the configuration. The method was originated
while the author was attempting to explain a peculiar be-
havior of an underwater missile, as predicted by the linearized
equations of motion, to individuals not well versed in stability
and control analysis. Since then, the author has adapted
the approach in teaching an aeronautical engineering course
in stability and control and in presenting a two-hour lecture
on stability and control to a heterogeneous group of engi-
neers during a short summer course in underwater missile
engineering.

It is the author's opinion, based on the cited experience,
that the method of approach presented in this paper brings
out the effects of changes in the configuration parameters
on the stability and controllability of a vehicle more clearly
than the traditional method. This is especially true in try-
ing to explain these effects to individuals not well versed in
stability and control analysis.

The development of the linearized equations of motion and
the study of the stability and control of airplane or missile-
type configurations is adequately covered in the literature.1"6

The neutral point is defined, in the pitch plane, as that point
on the longitudinal axis of the configuration where the pitching
moment does not vary with angle of attack. Its use is
limited to static stability considerations. If the neutral
point is aft of the e.g., the configuration is statically stable.

One can take advantage of the neutral point to formulate
certain problems in a manner resulting in a simplification of
the moment equation. This is illustrated for the following-
three cases: 1) the determination of level-flight trim condi-
tions, 2) the determination of maneuverability, and 3) the
stability of the short period mode.

Level Flight Trim

An airplane or missile in steady level flight is subjected
to a force system shown acting at the e.g. in Fig. 1. The
angle of attack a and the control surface deflection d are
considered to be small. The force system is dependent on
the angle of attack and the control system deflection. The
system is in equilibrium.

The force system of Fig. 1 is repeated in Fig. 2, with a
linear dependence of the force and moment on the angle
of attack and control deflection being assumed. The forces
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L = LIFT

CG= CENTER OF
GRAVITY

W = WEIGHT

Fig. 1 Steady level flight.

and moment have been divided by ^pV^S and ^pVozSl,
respectively, to place them in coefficient form, in which

p = density of the medium
VQ = freestream velocity
S = a reference area
I = a reference length

Since the system is in equilibrium, the angle of attack and
control surface deflection must be such that the lift coefficient
is the trim lift coefficient, the moment coefficient is zero, and
the thrust coefficient is equal to the drag coefficient at a given
velocity and density. Another way of stating this is that
the lift must equal the weight, the moment must be zero,
and the thrust equal to the drag.

From Fig. 2, the two equations involving the two un-
knowns, the trim angle of attack and control surface deflection,
can be written as

C Lcr^tri
w

C A ~f~ C o (1)
Equation (1) can be solved for the trim angle of attack and

control surface deflection. The neutral point is defined as
that point on the longitudinal axis of the body where the
aerodynamic moment does not depend on angle of attack, f
Transferring the equilibrium force system to the neutral
point should therefore simplify the moment equation. The
force system transferred to the neutral point is shown in
Fig. 3.

The prime on the moment indicates that the moment is
that about the neutral point. The neutral point is fixed
for a given configuration at the distance hnl from some refer-
ence position. The term £n is the static margin, that is,
the nondimensional distance between the neutral point and
the e.g. The thrust and drag forces are omitted from this
figure.

=c,

C =C + C a + C 8^M MQ Ma Trim M§ Trim

CG CD

l /2/>V0S Trim

Fig. 2 Linearized coefficients for trim.

f The stick-fixed case only will be considered. The method
can also be adapted to the stick-free case.
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Fig. 3 Aerodynamic moments about the neutral point.

Figure 4 is the force system of Fig. 3 nondimensionalized.
The moment equation, as pointed out previously and as seen
in Figs. 3 or 4, does not now depend on the angle of attack.
Compared with Fig. 2, Fig. 4 more clearly shows the effect
of e.g. changes or changes in the configuration for a given
configuration whose aerodynamic coefficients are linear with
angle of attack and control surface deflection. There is no
difference in the results of analysis based on either Fig. 2 or
4. Figure 4, however, can be discussed without writing down
the equations (which is a handy device for use in discussions of
qualitative data). This can be best illustrated by examples.

First, for a given velocity, altitude, and weight, consider
the effects of e.g. variation on the trim angle of attack and
control surface deflection. The moment due to the weight
acting at a distance from the neutral point must be balanced
by the moment due to the control surface deflection. The
moment, and thus the control surface deflection, varies lin-
early with the distance of the e.g. from the neutral point
£„, the static margin. The moment coefficient due to the
elevator angle will be positive for the elevators deflected
downward. The variation of the control surface deflection
d with the static margin £n is plotted on Fig. 5 as the solid
line. The static margin \n is positive for the e.g. ahead of
the neutral point. The slope and intercepts of the line are
easily determined from the moment relations shown in Fig. 4.

With 6trim determined from the moment equation, the
trim angle of attack a trim is determined from the lift equa-
tion. The trim angle of attack varies linearly with the trim
elevator deflection and therefore with the static margin. This
variation is shown as the dotted line in Fig. 5. The slopes
and intercepts are easily determined from the lift equation
and the plot of the elevator deflection.

As a second example, consider the effect of the control
surface location (at different longitudinal positions along the
body) on the trim angles of attack and control surface de-
flection. For this example, let the control force be considered
separate from the force of the rest of the configuration. In
particular, let the subscript c on a force or moment indicate
the force or moment due to the control surface. The sub-
cript — c on a force or moment will indicate the force or

c, = c, aTrim+CL8
STrim

c G
I ———————— ( — £

£n

W ,r

c1 = c + c sM M MR Trim
Tk 0 0

5 ————————
NP

l/2/>V0S Trim

Fig. 4 Trim: aerodynamic relationships at the neutral
point.
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Fig. 5

(see fig.3)

Effect of e.g. location on trim angle of attack and
control surface deflection.

moment of the configuration less that of the control surface.
The lift and moment or the configuration are then

L = L_c + Lc

M = M-c + I
(2)

where lc is the distance between the center of application of
the control force and the point about which the moment is
written. The force and moment system is shown in Fig. 6.

The force and moment system less the control surface,
transferred to the neutral point of the configuration less the
control surface (NP)-.CJ is shown in Fig. 7 in nondimensional
form. The nondimensional distance between the stated
neutral point, and the location of the control surface force is
designated as //.

The lift coefficient due to the control surface CLc is a func-
tion of angle of attack and control surface deflection. The
value of the force of the control surface must be such as to
balance the moment about (ATP)_C. For a given e.g. loca-
tion, weight, velocity, and altitude, this moment is a constant.
Assume that the unbalanced moment due to the weight and
CMQ about the neutral point is in the counterclockwise direc-
tion in Fig. 7. The control surface located aft of the neutral
point would then have to exert a downward force. As the
control surface approaches the neutral point, the force would
have to increase. Since a constant control surface moment is
required, the control force for trim varies inversely as the
distance between the neutral point and the control surface
force lc'. When the control surface is forward of the neutral
point, the direction of the control surface force has to be
reversed. The control force plotted as a function of the con-
trol surface location along the body as measured from the
neutral point is shown as the solid line in Fig. 8.

For the constant weight, e.g., altitude, and velocity, the
sum of the lift due to the control surface and to the rest of
the configuration must be a constant equal to the weight.
This is shown in Fig. 8 in terms of the lift coefficients of Fig.
7. The required lift coefficient of the configuration less the
control surface is shown as the dashed line. Since CL^C —
(CLa) -coi, the variation of a is also represented by the dashed
line provided the vertical scale is changed accordingly. The
linearizing assumption of small angles is violated when the
control surface is near the neutral point. The actual force

"-C "-C

(NP).C

Fig. 7

l /2 />V 0 S lnm

Control surface location: aerodynamic relation-
ships at the neutral point.

and moment system would therefore differ from that shown in
Figs. 7 and 8 when the control surface is near the neutral
point. Different curves are obtained if the neutral point is
ahead of the e.g. or if the unbalanced moment is in the opposite
direction.

Once the angle of attack a has been determined, the con-
trol surface deflection can be found for a given surface whose
relationship CLC = f(ot, 5) with positions along the body is
known.

If the neutral point of a configuration is located well for-
ward, such as a slender body with small stabilizing surfaces,
control surfaces located well forward could mean that the
distance between the neutral point and the control surfaces
would be rather small. The qualitative force system (or a
similar one based on the unbalance moment opposite to the
direction assumed for Fig. 8 or on the e.g. aft of the neutral
point) of Fig. 8 shows that the forces required for trim, and
consequently the trim angle of attack and control surface
deflection, would be large. This is probably why configura-
tions with forward control surfaces have very large stabilizing
surfaces. The neutral points are quite far aft of the control
surface location.

Maneuverability

The aerodynamic forces and moments during a maneuver
are dependent on the pitching (or yawing) velocities, as well
as the angle of attack and the control surface deflection. An
indication of the maneuverability of the configuration is
the elevator angle per gravity acceleration normal to the
flight path required to maintain the vehicle in a steady turn.
In the pitch plane, this value would change in a steady pull
up because the weight component is fixed in direction,
whereas the direction of the aerodynamic and propulsive forces
depends on the position of the vehicle in the turn. The
location in the loop considered for purposes of analysis is the
bottom of the loop where the flight path is tangent to the
horizontal.2 Figure 9 is a sketch of the force system, in-

Fig. 6 Longitudinal variation of control force.
Fig. 8 Control force and angle-of-attack variation with

control force location.
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M = M + M a

Fig. 9 Loop as an indication of maneuverability.

eluding a centrifugal force WVq acting on the vehicle at the
bottom of the loop. The terms q and R are the angular
velocity in pitch and turning radius, respectively. The
lift being developed is nW, where n is the load factor.

Consider a and d to be made up of two parts, the amount
required for trim flight and the amount required for the
maneuver. Then

L = 5man) + Lqq (3a)

Li = -L/tri

and

M = ^ Ms(8trim + <5man)

or

M = +

(3b)

Mqq
(3c)

(3d)
The condition shown in Fig. 9 is thus a sum of the two

conditions shown in Fig. 10, the level flight trim at weight
W, plus the "trim" to overcome the centrifugal force. The
aerodynamic force and moment in the second condition
shown in Fig. 10 also depend on the rotational velocity q.

The maneuverability can then be studied on the basis of the
system shown in the right-hand sketch of Fig. 10. The
left-hand side was investigated in the previous section of this
paper.

The force and moment system in accordance with the
procedure outlined in this paper is transferred to the neutral
point. The nondimensional force system, equivalent to
Fig. 4, is shown in Fig. 11.

The angular velocity with the cap over it q is a nondimen-
sional angular velocity. The freestream velocity VQ and a
characteristic length I are used for the nondimensionalizing.
The term /x is the nondimensional relative mass parameter.

For a constant angular velocity q, as well as a constant
velocity and altitude, the control surface deflection necessary
to maintain the loop is obtained from the moment relation-
ship of Fig. 11. There is an unbalance of the moment due
to the centrifugal force and of the moment due to the angular
velocity (the damping moment) that is balanced by deflecting
the control surface by 5man. For the constant conditions
stated, CM^q and Cr^q are constant. The system of Fig. 11
is then similar to that of Fig. 4.

The moment and side force due to the angular velocity q
vary with e.g. location. The variation of control surface
deflection and angle of attack is, therefore, not linear with
e.g. location as in Fig. 5. There is a location £ = £TO of the
e.g. where the moment about the neutral point due to the
centrifugal force just balances the damping moment due to
the angular velocity q (Fig. 11). Since the damping moment
is in the counterclockwise direction (that is, CM§ is negative)
this point is located aft of the neutral point, as seen from Fig.
11. Whereas the neutral point depends on the geometry of

the configuration only, the maneuver point depends on the
weight and altitude as well. Its position from the neutral
point, for 5man = 0, is given by the relationship

f = £m = (l/2/i)Cj|f£' (4)

determined from Fig. 11, where JJL is the nondimensional
relative mass parameter W/pStg.

In terms of the neutral point, as measured from some refer-
ence point (Fig. 11),

= kn ~ £„ = hn- (l/2/i)CV (5)

In order to be statically stable, the e.g. must be located
forward of the neutral point. The maneuver point is aft
of the e.g. In order to be as maneuverable as possible and
still be statically stable, the e.g. should be forward of the
neutral point and at as small a distance as possible.

Stick-Fixed Dynamic Stability

A simplified equation for the short period mode as given
by the linearized equations of motion is obtained by letting
the perturbation velocity in the x direction be zero and dis-
carding the force equation in the same direction.2 This
results in the equation

(2MZ) - CLa)a - (2/x -

a)a + (iBD - C
(6)

where D is the differential operator d/dt and iB is the non-
dimensional moment of inertia about the pitching axis.

The following roots of the characteristic equation of this
system are obtained:

X = {-1
where

A = iB(
B = iBCLa - (2/z + C

and

The terms CL$ and CL% are frequently small compared to /x.

MANEUVER

Fig. 10. Components of the loop.
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Since /x, iB, and CLa are positive and CM§ and CM% are nega-
tive, A and B are positive. The system will therefore be
stable if the square root is imaginary or less than 1 .0. There-
fore, for stability,

0 (8)

Thus, the fact whether the vehicle is stable or not (dis-
regarding the type of transient) is dependent on the force
and moment system due to the angle of attack of the body
a and the pitching velocity q.

The relationships of Eq. (8) obtained for stability suggest
that the behavior of the vehicle at the bottom of a loop of
constant radius will indicate whether or not it is stable (see
Fig. 9). The force system of the right-hand side of Fig. 10
for the additional forces arising from the steady turn is re-
peated in Fig. 12. The value of the moment about the
neutral point, noted as CM' in Fig. 11, is now written in terms
of the moment and force about the e.g. In addition, the
moment due to the control surface is written in terms of the
control force acting at some distance IT from the e.g.

Consider the system of Fig. 12 in equilibrium prior to in-
stantaneously zeroing the maneuver value of the control
surface deflection. If the moment about the neutral point
is negative, then making 5man zero will cause the moment to
bring the vehicle out of the loop. The relationship from
Fig. 12 is

< 0 (9)

Since

£„ = dc^/dCz, = CMJCLa (10)
for the neutral point ahead of the e.g., for the case shown in
Fig. 12,

Therefore, substituting in Eq. (9),

0 (11)

which is the relationship obtained in Eq. (8) from the linear-
ized equations of motion as the condition for the dynamic
stability of the vehicle.

If one is interested only in whether the vehicle is dynami-
cally stable and not in the type of the transient, this criterion
for dynamic stability can be expressed as in the following
paragraph.

If the moment about the neutral point less the control
force is in the direction tending to bring the vehicle out of the
loop, the vehicle is dynamically stable. If it is in the direc-
tion tending to decrease the radius of the loop, the vehicle is
dynamically unstable.

The force system of Fig. 12 illustrates the frequently men-
tioned criteria regarding torpedoes: 1) a stable torpedo will
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Fig. 12 Stability: aerodynamic relationships at the
neutral point.

Fig. 11 Maneuver: aerodynamic relationships at the
neutral point.

turn with its rudder (rudder moment in direction of turning)
and an unstable one against its rudder; and 2) a stable tor-
pedo in a turn will assume a straight-line course when the
rudder is instantaneously reduced to zero, whereas an un-
stable one will tend to spiral into a tighter turn.5

The force system of Fig. 12 illustrates that a vehicle stable
in water can become unstable on passing into air. If the
moment about the neutral point less the control surface con-
tribution is negative, the vehicle is stable. On passing
through air, the density, and therefore the relative mass
parameter, decreases by a factor of about 1000. This could
result in the moment unbalance changing signs and the ve-
hicle therefore becoming unstable.

Assume that the system of forces shown in Fig. 12 is that
of a dynamically stable vehicle. The unbalanced moment
(less the control moment) is therefore stable. Now, assume
that the e.g. moves aft. At some point the unbalanced mo-
ment about the neutral point will become zero. For a e.g.
location aft of this point, the unbalanced moment will change
direction. Since the control surface deflection required for
any turning rate is zero at this point, this location is the
maneuver point discussed in a previous section of the paper.
Thus, another way of stating the criteria for stability is that
the e.g. must be ahead of the maneuver point.

Summary and Conclusions

The method of this report can be summarized as follows.
The aerodynamic force and moment acting on a vehicle in
steady level flight are functions of angle of attack and con-
trol surface deflection. The maneuverability and stability
of the vehicle can be related to the condition of a steady turn
(or loop) where, in addition to angle of attack and control
surface deflection, the aerodynamic forces and moment are
also functions of the turning rate.

The aerodynamic moment and force system is transferred
to the neutral point, that is, to the point where the moment
is independent of angle of attack. For trim considerations,
the required control surface deflection is obtained directly
from the moment equation. With the control surface de-
flection determined, the angle of attack is found from the
force equation. For a given turning rate, the vehicle is
more maneuverable the smaller the control surface deflec-
tion required to maintain the turning rate. The moment
equation therefore is again independent of the force equation.
Concerning stability (not the degree, but only whether stable
or not), the vehicle is stable if the sum of the moment of the
centrifugal force and the aerodynamic moment about the
neutral point is in the direction to decrease the turning rate.

The method presented is not meant to take the place of
the linearized equations of motion. It is only meant as a tool
to supplement them. The author finds the method helpful
in understanding the effects of configuration changes on trim,
maneuverability, and stability.
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Frequently the results of studies have to be presented to
an individual not well versed in the linearized equations of
motion. The method outlined has been found useful by the
author in such circumstances, since it is based on free-body
diagrams of the force system and is thus put into a form
familiar to most engineers. The free-body system of this
report differs from the ones frequently found in the literature
in that the moments are considered about the neutral point
rather than the e.g. This makes the moment independent of
angle of attack and allows the discusser to point out qualita-
tive effects of variations of parameters without writing
any equations. He can satisfy the moment equation for
control surface deflection independently of the force equa-
tion. Knowing the control surface deflection required, he
can then determine the angle of attack required to satisfy
the force equation. This is illustrated in the text for a
number of cases. In a few places equations were written
only for purposes of explaining a point in the paper. The

equations obtained from the free-body diagrams are used
to obtain numerical answers.
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